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Abstract— This paper presents a model predictive control
scheme for a class of stochastic nonlinear systems subject
to chance constraints. The applied control is composed of a
nominal control action which is based on the solution of a tight-
ened deterministic optimal control problem and an ancillary
control law. The ancillary control law fights the uncertainties
in between sampling times. Chance constraints satisfaction as
well as convergence in a probabilistic sense of the closed loop
system are discussed. The overall approach is only slightly
more computational expensive than the corresponding nominal,
deterministic model predictive controller. The approach is
illustrated by a numerical example.

I. INTRODUCTION

Model predictive control (MPC) has received great atten-
tion over the past decades. The success of MPC is mainly
due to its capability to explicitly handle state and input
constraints. In “standard” deterministic MPC [1, 2] a finite
horizon open-loop optimization problem based on the current
system states is solved. Only the first part of the obtained
input trajectory is applied to the system, and the optimal
control problem is solved again using the updated state,
leading to an update of the input.

However, many systems are uncertain or with respect
to disturbances. Robust MPC schemes have been proposed
to guarantee stability and constraints satisfaction, which
mainly consider bounded disturbances or uncertainties. The
assumption of bounded disturbances or uncertainties does
not hold or lead to conservative behavior. One way to tackle
such systems is to consider the stochastic disturbances and
to use Monte Carlo based approaches [3, 4]. Other MPC
schemes, also used here, handle stochastic uncertainties by
predicting the behavior of a suitable nominal system, and
replacing the chance constraints by tightened deterministic
constraints. In case that the disturbances are Gaussian and
the system is linear the resulting problem can be relaxed to
a standard deterministically constrained MPC problem [5].
In [6–9], stochastic expansions of so called tube based MPC
for linear systems are proposed. Often, Cantelli’s inequality
is used to replace the chance constraints by deterministic
constraints [6, 7]. This, however, is limited to constraints,
of which each is a linear function of one state variable.
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Multivariate Chebyshev’s inequality is used, for example, in
[9], allowing the constraints to be linear combinations of
states and inputs. Chance constraints are handled directly
using the concept of probabilistic invariance in [10, 11],
there confidence ellipsoids in the state space, or polytopic
sets that are known to contain the vector of uncertain
parameters with a given probability are used. Stochastic MPC
for nonlinear systems has received only little attention, c.f.,
[12]. Under the assumption that the optimal stochastic cost
function is continuous, stability of model predictive control
for continuous-time stochastic systems is studied in [13].
Model predictive control of nonlinear systems subject to
probabilistic parametric uncertainties exploiting polynomial
chaos expansions has been investigated in many works [14,
15], establishing strict stability results for polynomial chaos
based methods is, however, challenging.

In this paper, a stochastic model predictive control scheme
for a class of nonlinear systems with chance constraints
is proposed. Multivariate Chebyshev’s inequality is used to
reformulate stochastic chance constraints into deterministic
constraints. The control law is composed of an open-loop
control part and a closed-loop, permanently applied ancillary
control law. The open loop control input is obtained by
solving repeatedly a finite horizon optimization problem with
tightened constraints. The approach guarantees recursive
feasibility, and has almost the same online computational
burden as the nominal MPC for deterministic systems.

In Section II the problem setup and necessary preliminary
results are stated. The control scheme, including the chance
constraints, and the ancillary control law, is introduced in
Section III. Chance constraints satisfaction and convergence
results are presented in Section IV. In Section V, a simulation
example demonstrates the features of the proposed scheme.
Section VI concludes the paper with a brief summary.

Basic Nomenclature and Definitions:

For an random vector s, E[s] and Cov[s] denote the
expectation and covariance matrix of s, respectively. Given
two events A and B, Pr(A|B) denotes the conditional
probability of A given B. For a symmetric matrix X ∈ R

n×n,
X ≻ 0(X � 0) denotes that X is a positive (semi-) definite
matrix, and X ≺ 0(X � 0) denotes that X is a negative
(semi-) definite matrix. Furthermore, ‖s‖M :=

√
sTMs for

M = MT � 0. The Pontryagin difference of A ∈ R
n and

B ∈ R
n is defined as [16] A ⊖ B =

{

x ∈ R
n| x + y ∈

A, ∀y ∈ B
}

, while the Minkowski sum of A and B is given
by A⊕ B =

{

̟ ∈ R
n | ∃x ∈ A, y ∈ B : ̟ = x + y

}

. The

2016 IEEE 55th Conference on Decision and Control (CDC)
ARIA Resort & Casino
December 12-14, 2016, Las Vegas, USA

978-1-5090-1836-9/16/$31.00 ©2016 IEEE 2751



multiplication of a set B ⊂ R
n by a matrix A ∈ R

m×n is
given by [17] AB =

{

c ∈ R
m | ∃b ∈ B, c = Ab

}

.

II. PROBLEM SETUP & PRELIMINARIES

We consider a continuous-time nonlinear system with
respect to stochastic disturbances

ẋ = Ax+ g(x) +Bu+Bww, (1)

where the term g(·) is assumed to be differentiable, and
g(0) = 0. The disturbances w(t) with E[w] = 0 and
Cov [wi(s), wi(t)] ≤ δ(t− s)α2 are independent, identically
distributed noise, where δ(·) is a Dirac delta function, and
α > 0 is a given constant.

The control input and system state have to satisfy chance
constraints of the form

Pr {x(t) ∈ X} ≥ p,

Pr {u(t) ∈ U} ≥ p, ∀t ≥ 0,
(2)

with p ∈ (0, 1), where X and U are compact sets. Perfect
state information is assumed to be available at all times.

We denote
˙̄x = Ax̄+ g(x̄) +Bū, (3)

as the nominal system.
The applied control signal consists of a nominal, open-

loop, input ū and a locally time-varying state feedback
K(t)v, i.e., u = ū +K(t)v, where v := x − x̄ denotes the
error between the real system (1) and the nominal system (3).
The error dynamics are given by

v := Av + g(x)− g(x̄) +BK(t)v +Bww. (4)

The objective of this paper is to develop an MPC scheme for
the systems (1) that allows to satisfy the chance constraints
and is computational attractive. The basic idea is to calculate
the open-loop input at discrete sampling times, to predict
the nominal dynamics (3) with the nominal control input ū,
and to tight the disturbances in between samplings by the
linear control law such that the probabilistic constraints are
satisfied.

III. MODEL PREDICTIVE CONTROL

In this section we outline the MPC scheme consisting of
an online calculated open-loop input based on the repeatedly
solution of a nominal MPC problem at the sampling times,
and a local control law calculated offline which is used to
keep the uncertain trajectory close to the nominal trajectory.

A. Ancillary control law

First, note that since g(h) is differentiable, there always
exists a x̃ := (1 − c)x + cx̄ for some c ∈ [0, 1] such that
Eq.(4) can be rewritten as

v̇ =Av + g(x)− g(x̄) +BK(t)v + Bww

=Av +
dg(h)

dh
|h=x̃v +BK(t)v +Bww

=A(t)v +BK(t)v +Bww,

(5)

where A(t) , A+ dg(h)
dh

|h=x̃.

Assumption 1: There exists a locally control law K(t)
such that A(t)+BK(t) is asymptotically stable for all t ≥ 0.
Suppose that v(0) = 0, then the mean of the error v(t) is
given by

E[v(t)] = E

[
∫ t

0

eAcl(τ)(t−τ)Bww(τ)dτ

]

=

∫ t

0

eAcl(τ)(t−τ)BwE[w(τ)]dτ = 0

with Acl(t) , A(t) +BK(t).
Furthermore, the covariance of v(t) is given by

E
[

v(t)v(t)T
]

=E

[

∫ t

0

∫ t

0

eAcl(τ1)(t−τ1)Bww(τ1)

w(τ2)
TBT

we
Acl(τ2)

T (t−τ2)dτ1dτ2

]

=

∫ t

0

∫ t

0

eAcl(τ1)(t−τ1)BwE
[

w(τ1)w(τ2)
T
]

BT
we

Acl(τ2)
T (t−τ2)dτ1dτ2

�α2

∫ t

0

eAcl(τ)(t−τ)BwB
T
we

Acl(τ)
T (t−τ)dτ.

Thus, with Γ(t) :=
∫ t

0
eAcl(τ)(t−τ)BwB

T
we

Acl(τ)
T (t−τ)dτ,

we have that

E
[

v(t)v(t)T
]

� α2Γ(t).

Γ(t) is a time-varying controllability gramian of
(Acl, Bw) [18, 19], which is the solution of

dΓ(t)

dt
= BwB

T
w +Acl(t)Γ(t) + Γ(t)AT

cl(t),Γ(0) = 0. (6)

Since eAcl(τ)(t−τ)BwB
T
we

Acl(τ)
T (t−τ) ≻ 0, Γ(t) is mono-

tonically increasing with time t. Suppose that limt→∞ Γ(t)
exists. Without loss of generality, denote limt→∞ Γ(t) = Γ.
Then, Γ ≥ Γ(t) for all t ≥ 0.

We propose to use linear differential inclusion (LDI) to
obtain static linear control gain K and Γ. Suppose that for a
static linear control law Kv and for each x̃ ∈ X there exists
a linear differential inclusion Ω such that

[

Acl(t) Bw

]

∈ Ω, ∀x̃ ∈ X and t. (7)

Then every trajectory of the error system (5) is also a
trajectory of the LDI defined by Ω.

Suppose that the linear differential inclusion Ω is a poly-
tope described by a list of its vertices,

Ω := Co
{[

A1 Bw

]

, · · · ,
[

AN Bw

]}

,

where N is the number of vertex. Then, (6) can be re-
duced to an algebraic matrix equation, if there exist time-
invariant matrices Γ and K such that (6) is satisfied for all
[

Ai Bw

]

∈ Ω, i ∈ [1, N ]. Moreover, the corresponding
algebraic matrix equation can be solved by linear matrix
inequalities (LMIs).
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B. Deterministic reformulation of the chance constraints

Satisfication of the chance constraints in a deterministic
MPC problem requires to reformulate them in a deterministic
way. For shortness of presentation, we denote the covariance
of v as Σ, i.e., Σ := Cov[v], and H = α2Γ. Furthermore,
for a fixed ǫ > 0, we define the two sets

DΣ =
{

v ∈ R
nx | vTΣ−1v ≤ ǫ

}

DH =
{

v ∈ R
nx | vTH−1v ≤ ǫ

}

.

Then, if E[v] = 0 and E[vvT ] � α2Γ, we have that
Σ � H and DΣ ⊆ DH . Furthermore, due to Multivariate
Chebyshev’s inequality [20, 21], Pr{v ∈ DΣ} ≥ 1 − nx

ǫ
.

Thus, Pr{v ∈ DH} ≥ 1 − nx

ǫ
, and the state of the error

system satisfies Pr{vTH−1v ≤ ǫ} ≥ 1 − nx

ǫ
. Choosing

p = 1− nx

ǫ
, we know that the system states are in DH with

probability p:

Pr {v(t) ∈ DH} ≥ p, ∀t ≥ 0. (8)

Choosing the sets X0 and U0 as follows

X0 = X ⊖DH

U0 = U ⊖KDH ,
(9)

then the constraints (2) are satisfied with probability p if
x̄ ∈ X0 and ū ∈ U0.

C. Sampled-data open-loop control input

Similar as in [22–24], the opne-loop control input is
obtained by the solution of an optimal control problem
subject to the nominal dynamics (3). To achieve satisfaction
of the probability constraints, tightened, deterministic con-
straints x̄ ∈ X0 and ū ∈ U0 are used. As the cost function
we use

J(x̄(tk), ū(·; x̄(tk))) := S (x̄(tk + Tp, x̄(tk))) +
∫ tk+Tp

tk

‖x̄ (τ ; x̄(tk)) ‖2Q + ‖ū (τ ; x̄(tk)) ‖2Rdτ,
(10)

where Tp is the prediction horizon, Q ∈ R
nx×nx and R ∈

R
nu×nu are positive definite weighting matrices.

We use a terminal set Xf := {x̄ ∈ R
nx | S(x̄) ≤ α} with

α > 0 and a terminal penalty S(x̄) to guarantee stability and
recursive constraint satisfication. To this end, we assume that:

Assumption 2: (Terminal region, terminal penalty) There
exists a control law π(x̄) such that [2, 25]:

B0. Xf ⊆ X0,
B1. π(x̄) ∈ U0 for all x̄ ∈ Xf ,
B2. S(x̄) satisfies α3(‖x̄‖) ≤ S(x̄) ≤ α4(‖x̄‖), and

∂S(x̄)

∂x̄
(Ax̄+ g(x̄) +Bū) + l (x̄, π(x̄)) ≤ 0 (11)

for all x̄ ∈ Xf , where α3(·) and α4(·) are class K∞

functions, and l(x, u) := ‖x‖2Q + ‖u‖2R.

We will use two optimization problems to derive feasible
open-loop input for satisfication of the chance constraints.

Problem 1: (nominal case)

minimize
ū(·;x̄(tk))

J(x̄(tk), ū(·; x̄(tk)))

subject to
˙̄x = Ax̄+ g(x̄) +Bū, x̄(tk) is given,

x̄(τ ; x̄(tk)) ∈ X0, τ ∈ [tk, tk + Tp),

ū(τ ; x̄(tk)) ∈ U0, τ ∈ [tk, tk + Tp),

x̄(tk + Tp; x̄(tk)) ∈ Xf .
Problem 2: (constraint tightening)

minimize
x̄(tk),ū(·;x̄(tk))

J(x̄(tk), ū(·; x̄(tk)))

subject to
˙̄x = Ax̄+ g(x̄) +Bū,

x(tk)− x̄(tk) ∈ DH ,

x̄(τ ; x̄(tk)) ∈ X0, τ ∈ [tk, tk + Tp),

ū(τ ; x̄(tk)) ∈ U0, τ ∈ [tk, tk + Tp),

x̄(tk + Tp; x̄(tk)) ∈ Xf .
Compared to Problem 1, x(tk) − x̄(tk) ∈ DH is added and
x̄(tk) is optimized in Problem 2. Furthermore, in Problem 2
directly the updated system state x(tk) enters, which captures
the present disturbances. In the following, the ū∗(τ, x̄(tk))
denotes the optimal input, and x̄∗ (·; x̄(tk)) the predicted
trajectory of (3) starting from x̄(tk) driven by the optimal
input ū∗ (·; x̄(tk)), where τ ∈ [tk, tk + Tp].

For implementation, either Problem 1 or Problem 2 is
solved. For simplicity, we consider an equidistant sampling
time δ, tk = δ · k. The nominal control during the sampling
interval, the times tk when the open-loop problem is solved,
is given by

ū(τ) = ū∗ (τ ; x̄(tk)) , τ ∈ [tk, tk + δ). (12)

The applied control input to the system is given

u(τ) := ū(τ)+K(x(τ) − x∗(τ ; x̄(tk))) , τ ∈ [tk, tk + δ).

Note the continuous feedback term, given by the ancillary
control law K(·), is introduced.

It is known that sampled-data MPC stabilizes the nominal
system if the terminal conditions B0-B2 are satisfied [1, 2].
Furthermore, the optimal value function J∗ satisfies

J∗(x̄(t+ δ, x̄(t)), ·) − J∗(x̄(t), ·)

≤ −
∫ δ

0

‖x̄(t+ τ, x̄(t))‖2Q + ‖ū(t+ τ, x̄(t))‖2R)dτ, (13)

which will be used to prove the convergence of the real
systems under control.

The proposed MPC scheme is formally described by:
Algorithm 1: (Nonlinear MPC with ancillary control law)

Step 0. At initial time t0, let x̄(t0) = x(t0) where
x(t0) is the current state. Solve Problem 1 to obtain
the nominal control input ū(τ) and the applied control
input u(τ), τ ∈ [t0, t0 + δ]. Precede to Step 2.
Step 1. At time tk, nominal state x̄(tk) and real state
x(tk):

(i) If x(tk)− x̄(tk) ∈ DH , solve Problem 2 to obtain
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ū(τ), x̄(tk), and calculate u(τ), τ ∈ [tk, tk + δ].
(ii) If x(tk)− x̄(tk) /∈ DH , solve Problem 1 to obtain

ū(τ), and calculate u(τ), τ ∈ [tk, tk + δ].

Step 2. Apply u(τ) for τ ∈ [tk, tk + δ].
Step 3. Obtain x(tk+1) and calculate x̄(tk+1) for
tk+1 := tk + δ, set k := k + 1, precede to Step 1.

IV. CHANCE CONSTRAINTS SATISFACTION &
CONVERGENCE

We discuss the properties of the closed-loop system under
control, i.e., chance constraints satisfaction and convergence
of the system dynamics in a probabilistic sense.

A. Chance constraints satisfaction

We emphasize that x(t) − x̄(t) ∈ DH with probability p
for all t if x(t0) = x̄(t0) for some t0. That is, x(t) ∈ X and
u(t) ∈ U with probability p for all t since x̄(t) ∈ X0 and
ū(t) ∈ U0 for all t. For simplicity, we use tn+1 := tn + δ.

Three cases are considered to prove chance constraints
satisfaction.

Event A: v(tn) = 0,
For t ∈ [tn, tn + Tp], there exists ū(t, x̄(tn)) such that

• x̄(t, x̄(tn)) ∈ X0, ū(t, x̄(tn)) ∈ U0

• x̄(tn + Tp, x̄(tn)) ∈ Xf .

Event B: v(tn+1) ∈ DH ,
For t ∈ [tn+1, tn + Tp],

• x̄(t, x̄(tn+1)) ∈ X0, ū(t, x̄(tn+1)) ∈ U0

• x̄(tn + Tp, x̄(tn+1)) ∈ Xf ,

and for t ∈ [tn + Tp, tn+1 + Tp],

• a nominal trajectory starts from x̄(tn + Tp, x̄(tn+1))
under the control law π(·).

Event C: v(tn) = 0, and v(tn+1) ∈ DH ,
For t ∈ [tn, tn+1 + Tp], there exists ū(t, x̄(tn)) such that

• x̄(t, x̄(tn)) ∈ X0, ū(t, x̄(tn)) ∈ U0

• x̄(tn+1 + Tp, x̄(tn)) ∈ Xf .

and for t ∈ [tn + Tp, tn+1 + Tp],

• a nominal trajectory starts from x̄(tn + Tp, x̄(tn+1))
under the control law π(·).

Note that, for Event A, the actual system states x(t, x̄(tn))
lie in the set DH centered the predicted trajectory x̄(t, x̄(tn))
with probability p which is driven by the control ū(t, x(tn)),
t ∈ [tn, tn + Tp], since x(t, x̄(tn)) = x̄(t, x̄(tn)) + v(t) and
v(t) ∈ DH with probability p.

Theorem 1: Suppose that Problem 1 is feasible at time t0.
Then, the chance constraints (2) are satisfied with probability
p for all t ≥ t0.
Proof: Two scenarios are considered: v(tn+1) ∈ DH and
v(tn+1) /∈ DH for all t ∈ [tn+1, t0 + Tp].

(1) Suppose that v(tn+1) ∈ DH , choose x̄(t, x̄(tn+1)) :=
x̄(t, x̄(tn)) and ū(t, x̄(tn+1)) := ū(t, x̄(tn)) for all t ∈
[tn+1, tn+Tp], then the first three conditions of Event B are
satisfied. That is, the Second and Third condition of Event B
can be chosen from the segment trajectory of Event A, see
the blue line of Fig.1. Once x̄(tn+Tp, x̄(tn)) enters into the
terminal set Xf , it will never leave the terminal set Xf , cf.

Fig. 1. Sketch idea of recursive feasibility

Assumption 2. Thus there exists ū(tn + τ, x̄(tn)) ∈ U0 such
that x̄(tn + τ, x̄(tn)) ∈ X0 for all τ ∈ [tn + Tp, tn+1 + Tp].
Due to the discussion above, the occurrence of Event A
implies the occurrence of Event B, i.e., Pr(B|A) = 1.

Since Problem 1 is feasible at time tn, and Pr{v(t) ∈
DH} ≥ p for all t ≥ 0, Pr(A) ≥ p. Furthermore, Pr(C) =
Pr(A ∩ B) = Pr(B|A)Pr(A) ≥ p in terms of Pr(A) ≥ p
and Pr(B|A) = 1.

Moreover, for Event A, x(t, x̄(tn)) ∈ X , u(t, x̄(tn)) ∈ U
with probability p for all t ∈ [tn, tn + Tp] in terms of X0 =
X ⊖ DH and U0 = U ⊖ KDH . The same holds for Event
C, i.e., both the actual state constraints and the actual input
constraints are satisfied in Event C.

(2) Suppose that v(tδ) /∈ DH , then Problem 1 is solved.
Due to Theorem 1 in [9], chance constraints are satisfied
with probability p.

In terms of induction, chance constraints (2) are satisfied
with probability p for all t ≥ t0 if Problem 1 is feasible at
time t0. ✷

Note that chance constraints are satisfied for all t ≥ 0
since the disturbances w(t) can be regarded as a realization
of w(t) at t = 0.

B. Convergence

Define a function

V (x) = J(x̄∗, ū∗(·, x̄∗)), (14)

which is the optimal cost function of the related problem.
Next properties of the optimal cost function are derived
which will be used to prove that the real system state
converges and stays in the set DH in a probabilistic sense
as time goes to infinity.

Lemma 1: Suppose that Problem 1 is feasible at time t0
with x̄(t0) = x(t0), then,

(i) 0 ≤ V (x) < +∞,
(ii) V (x) = 0, for all x ∈ DH , and
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(iii)

V
(

x(t+ δ)
)

− V (x(t)) ≤

−
∫ t+δ

t

‖x̄∗(τ, x̄(t))‖2Q + ‖ū∗(τ, x̄(t))‖2Rdτ
(15)

Proof: (i) follows directly from the definition of V (·).
(ii) Let x(t) be an arbitrary point in DH . Since x(t) ∈

0 ⊕ DH , it follows that x̄∗(t) = 0 and ū∗(τ, 0) ≡ 0, for all
τ ≥ t, consist of a feasible solution to Problem 2. Hence
V (x) ≤ J(0, ū∗(τ, 0)) = 0, which establishes the result.

(iii) If x(t + δ) − x̄∗ (t+ δ, x̄(t)) ∈ DH , x̄∗ (t+ δ, x̄(t)),
ū∗ (τ, x̄(t)) for τ ∈ [t+ δ, t+ Tp] and the control law π(·)
for τ ∈ [t+ Tp, t+ δ + Tp] consist of a feasible solution to
Problem 2 at the time instant t+ δ.

If x(t + δ) − x̄∗ (t+ δ, x̄(t)) /∈ DH , ū∗ (τ, x̄(t)) for τ ∈
[t+δ, t+Tp] and the control law π(·) for τ ∈ [t+Tp, t+δ+Tp]
consist of a feasible solution to Problem 1 at the time instant
t+ δ.

In terms of Eq. (13), J
(

x̄∗(t+ δ, x̄(t)), ·
)

− J
(

x̄∗(t), ·
)

≤
−
∫ δ

0
‖x̄(t + τ, x̄(t))‖2Q + ‖ū(t + τ, x̄(t))‖2R)dτ . Since

V (x(t)) = J (x̄∗(t), ·) and V (x(t + δ)) ≤ J(x̄∗(t +
δ, x̄(t)), ·), the proposition follows. ✷

Theorem 2: Suppose that Problem 1 is feasible at time t0
with x̄(t0) = x(t0). Then, the system state x(t) converges
to DH with probability p.
Proof: According to Eq. (15), V (x(tk)) is monotonically
non-increasing. Furthermore, the lower bound of V (x(tk))
is 0. Thus, V (x(tk)) converges as tk → ∞ for a bounded
and monotonic function has a finite limit. By taking limits
on both sides of Eq. (15),

lim
tk→∞

∫ tk+δ

tk

‖x̄∗(τ, x̄(tk))‖2Qdτ

≤ lim
tk→∞

V (x(tk))− lim
tk→∞

V (x(tk + δ)) = 0

Thus, x̄∗(τ, x̄(tk)) → 0 for all τ ∈ [tk, tk + δ] as tk → ∞.
Since x(t) − x̄(t) ∈ DH with probability p for all t ≥ tk,
x(t) → DH with probability p while x̄(t) → 0. ✷

The decreasing function V (x) converges to zero and the
nominal system state x̄ approaches to its equilibrium. Thus,
the real system state will approach to DH with probability
p since x(t) − x̄(t) ∈ DH .

V. ILLUSTRATIVE EXAMPLE

We consider a simple nonlinear system of the form

ẋ(t) =

[

−1 2
−3 4

]

x(t) + g(x(t)) +

[

0.5
−2

]

u(t) +

[

0
1

]

w(t),

(16)
where g(x) =

[

0 −0.25x3
2

]T
. The origin of this system is

open-loop unstable, while its linearized system is stabiliz-
able. The system is with respect to chance constraints

Pr {−2 ≤ u(t) ≤ 2} ≥ 0.97

Pr {−3 ≤ xi(t) ≤ 3} ≥ 0.97, i = 1, 2.
(17)

The disturbance w ∈ R
1 is assumed to be Gaussian random

with E[w] = 0 and var[w] = 0.1.

A polytopic linear differential inclusion representation

of the nonlinear system (16) is: A1 =

[

−1 2
−3 4

]

, A2 =
[

−1 2
−3 3

]

, B1 = B2 =
[

0.5 −2
]

′

, B1w = B2w =
[

0 1
]

′

.

Solving (6) for the static case one obtains K and Γ, K =
[

−0.9226 3.6831
]

′

and Γ =

[

0.1691 0.0619
0.0619 0.1279

]

.

A quadratic cost function l(x̄, ū) = x̄TQx̄ + ūTRū
with Q = diag(0.5, 0.5) and R = 1 is used. Both
the terminal control law and the terminal penalty ma-
trix are computed via a convex optimization problem,
c.f. [26], π(x̄) =

[

−1.1365 1.1528
]

x̄ and S(x̄) =

x̄T

[

8.8315 −12.8757
−12.8757 27.7728

]

x̄. The resulting terminal set is

Xf = {x̄ ∈ R
n2 | S(x̄) ≤ 10}. The open-loop optimization

problem is solved at δ = 0.1 sampling times using a
prediction horizon of Tp = 1.5.

Figure 2 shows the state trajectory starting from the state
[−2.5 −1.5]T applying the proposed scheme. A total of 1000
simulations with var[w] = 0.1 were performed. As can be
seen, the chance constraints (17) are satisfied with proba-
bility 1 although the “worst” (in the sense of the maximum
amplitude) disturbance is |w| = 0.4289. This results from
the fact that the controllability gramian is used to bound the
covariance of v(t) for all t ∈ [0,∞), and the estimation on
the covariance of v(t) is inevitably conservative.

For E[w] = 0 and var[w] = 0.1, Pr{w ∈ (−∞,−0.3] ∪
[0.3,∞)} = 0.0026, i.e., “nearly all” values lie within a band
around the mean a width of three standard deviations. Note
that robust MPC schemes need to treat all possible distur-
bances no matter how small the probability of appearance
is. In contract stochastic MPC approaches as shown only
need to cope with “nearly all” disturbances which reduce
the conservativeness in a probabilistic sense.

VI. CONCLUSIONS

This paper outlined a probabilistic model predictive con-
trol scheme for a class of continuous-time nonlinear sys-
tems with respect to stochastic disturbances and chance
constraints. The control input is composed of both a nominal
control action and an ancillary control law. The nominal
control input is determined at each sampling time by a deter-
ministic MPC formulation with tightened constraints. For the
deterministic MPC formulation, Multivariate Chebyshev’s
inequality is used to reformulate the chance constraints to
deterministic constraints. The nominal control action drives
the mean of the original nonlinear systems to its equilibrium,
while the ancillary control law maintains the error systems
within a probabilistic set. The proposed scheme has almost
the same computational burden as standard MPC for deter-
ministic systems. Furthermore, asymptotic convergence in a
probabilistic sense was proved. The price to pay is a slightly
decrease in performance.
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[2] H. Chen and F. Allgöwer, “A quasi-infinite horizon nonlinear model
predictive control scheme with guaranteed stability,” Automatica,
vol. 34, no. 10, pp. 1205–1217, 1998.

[3] D. Bernardini and A. Bemporad, “Scenario-based model predictive
control of stochastic constrained linear systems,” in Proc. 48th IEEE
Conf. Decision Contr. and 28th Chinese Contr. Conf., 2009, pp. 6333–
6338.

[4] N. Kantas, J. M. Maciejowski, and A. Lecchini-Visintini, “Sequential
Monte Carlo for model predictive control,” in Nonlinear Model Pre-
dictive Control - Towards New Challenging Applications, L. Magni,
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